
CS 61B More Sorting
Spring 2021 Exam Prep Discussion 13: April 19, 2021

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ(), Worst Case: Θ()

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ(), Worst Case: Θ()

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ(), Worst Case: Θ()

• There is exactly 1 inversion

Best Case: Θ(), Worst Case: Θ()

• There are exactly (N2 −N)/2 inversions

Best Case: Θ(), Worst Case: Θ()

2 More Sorting

2 MSD Radix Sort
Recursively implement the method msd below, which runs MSD radix sort on a List

of Strings and returns a sorted List of Strings. For simplicity, assume that each

string is of the same length. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort,

but any sort works! For the subroutine here, you may use the stableSort method,

which sorts the given list of strings in place, comparing two strings by the given

index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this

list between the specified fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the

specified collection to the end of this list, in the order that they are returned

by the specified collection’s iterator.

1 public static List<String> msd(List<String> items) {

2

3 return __;

4 }

5

6 private static List<String> msd(List<String> items, int index) {

7

8 if (___) {

9 return items;

10 }

11 List<String> answer = new ArrayList<>();

12 int start = 0;

13

14 ___;

15 for (int end = 1; end <= items.size(); end += 1) {

16

17 if (___) {

18

19 ___;

20

21 ___;

22

23 ___;

24 }

25 }

26 return answer;

27 }

28 /* You don't need to understand the implementation of this method to use it! */

29 private static void stableSort(List<String> items, int index) {

30 items.sort(Comparator.comparingInt(o -> o.charAt(index)));

31 }

More Sorting 3

3 Shuffled Exams
For this problem, we will be working with Exam and Student objects, both of which

have only one attribute: sid, which is a number like any student ID.

PrairieLearn thought it was ready for the final. It had meticulously created two

arrays, one of Exams and the other of Students, and ordered both on sid such that

the ith Exam in the Exams array has the same sid as the ith Student in the Students

array. Note the arrays are not necessarily sorted by sid. However, PrairieLearn

crashed, and the Students array was shuffled, but the Exams array somehow re-

mained untouched.

Time is precious, so you must design a O(N) time algorithm to reorder the Students

array appropriately without changing the Exams array!

Hint: Begin by reordering both the Students and Exams arrays such that ith Exam

in the Exams array has the same sid as the ith Student in the Students array.

.

	Sorted Runtimes
	MSD Radix Sort
	Shuffled Exams

