
CS 61B Sorting
Spring 2021 Exam Prep Discussion 12: April 12, 2021

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms

on the same input list. The steps do not necessarily represent consecutive steps

in the algorithm (that is, many steps are missing), but they are in the correct

sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element

of sequence as pivot), and heapsort. When we split an odd length array in half in

mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

Mergesort. One identifying feature of mergesort is that the left and right halves

do not interactwith each other until the very end.

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning

the first iteration should break up the array into something like | < 1429 | =

1429 | > 1429

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

Insertion Sort. Insertion sort starts at the front, and for each item, move to

the front as far as possible. These are the first few iterations of insertion sort

so the right side is left unchanged

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

2 Sorting

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

Heapsort. This one’s a bit more tricky. Basically what’s happening is that the

second line is in the middle of heapifying this list into a maxheap. Then we

continually remove the max and place it at the end.

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Sorting 3

2 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve dis-

cussed in class. If the question is T/F and the statement is true, provide an expla-

nation. If the statement is false, provide a counterexample.

(a) (T/F) Quicksort has a worst case runtime of Θ(NlogN), where N is the number

of elements in the list that we’re sorting.

False, quicksort has a worst case runtime of Θ(N2), if the array is partitioned

very unevenly at each iteration.

(b) We have a system running insertion sort and we find that it’s completing

faster than expected. What could we conclude about the input to the sorting

algorithm?

The input is small or the array is nearly sorted. Note that insertion sort has a

best case runtime of Θ(N), which is when the array is already sorted.

(c) Give a 5 integer array that elicits the worst case runtime for insertion sort.

A simple example is: 5 4 3 2 1. Any 5 integer array in descending order would

work.

(d) (T/F) Heapsort is stable.

False, stability for sorting algorithms mean that if two elements in the list are

defined to be equal, then they will retain their relative ordering after the sort

is complete. Heap operations may mess up the relative ordering of equal items

and thus is not stable. As a concrete example (taken from Stack Overflow),

4 Sorting

consider the max heap: 21 20a 20b 12 11 8 7

(e) Give some reasons as to why someone would use mergesort over quicksort.

Some possible answers: mergesort has Θ(NlogN)worst case runtime versus

quicksort’s Θ(N2). Mergesort is stable, whereas quicksort typically isn’t. Merge-

sort can be highly parallelized because as we saw in the first problem the left

and right sides don’t interact until the end. Mergesort is also preferred for

sorting a linked list.

Sorting 5

(f) You will be given an answer bank, each item of which may be used multiple

times. You may not need to use every answer, and each statement may have

more than one answer.

A. QuickSort (in-place using Hoare partitioning and choose the leftmost item

as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer

is none of them, use N indicating none of the above. All answers refer to the

entire sorting process, not a single step of the sorting process. For each of the

problems below, assume that N indicates the number of elements being sorted.

_______________ Bounded by Ω(NlogN)lower bound.

_______________ Has a worst case runtime that is asymptotically better than

Quicksort’s worstcase runtime.

_______________ In the worst case, performs Θ(N) pairwise swaps of elements.

_______________ Never compares the same two elements twice.

_______________ Runs in best case Θ(logN)time for certain inputs

Solution:

A, B, C. Bounded by Ω(NlogN)lower bound.

B, E. Has a worst case runtime that is asymptotically better than Quicksort’s

worstcase runtime.

C. In the worst case, performs Θ(N) pairwise swaps of elements.

A, B, D. Never compares the same two elements twice.

6 Sorting

N. Runs in best case Θ(logN)time for certain inputs

Sorting 7

3 Bears and Beds
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.

Solution:

Our solution will modify quicksort. Let’s begin by choosing a pivot from the Bears

list. To avoid quicksort’s worst case behavior on a sorted array, we will choose a ran-

dom Bear as the pivot. Next we will partition the Beds into three groups — those

less than, equal to, and greater than the pivot Bear. Next, we will select a pivot

from the Beds list. This is very important — our pivot Bed will be the Bed that is

equal to the pivot Bear. Given that the Beds and Bears have unique sizes, we know

that exactly one Bed will be equal to the pivot Bear. Next we will partition the

Bears into three groups — those less than, equal to, and greater than the pivot Bed.

Next, we will ”match” the pivot Bear with the pivot Bed by adding them to the

Bears and Beds lists at the same index, which is as easy as just adding to the end.

Finally, in the same fashion as quicksort, we will have two recursive calls. The first

recursive call will contain the Beds and Bears that are less than their respective

pivots. The second recursive call will contain the Beds and Bears that are greater

than their respective pivots.

	Identifying Sorts
	Conceptual Sorts
	Bears and Beds

