
CS 61B LLRBs and Hashing
Spring 2021 Exam Prep Discussion 8: March 8, 2021

1 LLRB Insertions
Given the LLRB below, perform the following insertions and draw the final state

of the LLRB. In addition, for each insertion, write the fixups needed in the correct

order. A fixup can either be a rotate right, a rotate left, or a color flip. If no fixups

are needed, write ”Nothing”.

1. Insert 7

2. Insert 6

3. Insert 2

4. Insert 8

5. Insert 8.5

Final state:



2 LLRBs and Hashing

Solution: For a visualization of the process, see here

1. Insert 7

• Nothing

2. Insert 6

• rotateRight(9)

• colorFlip(7)

• colorFlip(5)

3. Insert 2

• rotateLeft(1)

4. Insert 8

• Nothing

5. Insert 8.5

• rotateLeft(8)

• rotateRight(9)

• colorFlip(8.5)

• rotateLeft(7)

Final state:

https://docs.google.com/presentation/d/1uWEnm4L2cNTmFNeT4qqATHWRA9tbYbcV78uJRFIZtqw/edit##slide=id.g8336e82847_0_2584


LLRBs and Hashing 3

2 LLRB Maximization
For this problem, we are working with the LLRB below. Determine an integer x

such that the insertion of x into the LLRB requires exactly 6 fixups. A fixup can

either be a rotate right, a rotate left, or a color flip. The solution must include the

integer x and an enumeration of the fixups in the proper order.

Solution:

We insert integer 5 into the configuration below and perform the following steps:

1. Rotate 4 left

2. Rotate 6 right

3. Colorflip 5

4. Rotate 2 left

5. Rotate 8 right

6. Colorflip 5



4 LLRBs and Hashing

3 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int charisma;

3 String name;

4 TA(String name, int charisma) {

5 this.name = name;

6 this.charisma = charisma;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return charisma;

16 }

17 }

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA sohum = new TA("Sohum", 10);

3 TA vivant = new TA("Vivant", 20);

4 map.put(sohum, 1);

5 map.put(vivant, 2);

6

7 vivant.charisma += 2;

8 map.put(vivant, 3);

9

10 sohum.name = "Vohum";

11 map.put(vivant, 4);

12

13 sohum.charisma += 2;

14 map.put(sohum, 5);

15

16 sohum.name = "Sohum";

17 TA shubha = new TA("Shubha", 24);

18 map.put(shubha, 6);



LLRBs and Hashing 5

Solution:



6 LLRBs and Hashing

4 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors

and briefly explain why they are incorrect and in which situations would the bug

cause problems.

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

Solution:

Although equal objects will have the same hashcode, but the problem here is that

hashCode() is not deterministic. This may result in weird behaviors (e.g. the

element getting lost) when we try to put or access elements.

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }

Solution: The problem with this hashCode() is that not all equal objects have

the same hashcode. This may produce unexpected behavior, e.g. multiple ”equal”

objects may be exist in different buckets in the HashMap, the containsKey operation

may return false, etc. One key thing to remember is that when we override the

equals() method, we have to also override the hashCode() method to ensure equal

objects have the same hashCode.


	LLRB Insertions
	LLRB Maximization
	Hashing Gone Crazy
	Buggy Hash

