
CS 61B Arrays, Linked Lists
Spring 2021 Exam Prep Discussion 3: February 1, 2021

1 Fill Grid
Given two one-dimensional arrays LL and UR, fill in the program on the next page

to insert the elements of LL into the lower-left triangle of a square two-dimensional

array S and UR into the upper-right triangle of S, without modifying elements along

the main diagonal of S. You can assume LL and UR both contain at least enough

elements to fill their respective triangles. (Spring 2020 MT1)

For example, consider

int[] LL = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0 };

int[] UR = { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };

int[][] S = {

{ 0, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0}

};

After calling fillGrid(LL, UR, S), S should contain

{

{ 0, 11, 12, 13, 14 },

{ 1, 0, 15, 16, 17 },

{ 2, 3, 0, 18, 19 },

{ 4, 5, 6, 0, 20 },

{ 7, 8, 9, 10, 0 }

}

(The last two elements of LL are excess and therefore ignored.)

2 Arrays, Linked Lists

1 /** Fill the lower-left triangle of S with elements of LL and the

2 * upper-right triangle of S with elements of UR (from left-to

3 * right, top-to-bottom in each case). Assumes that S is square and

4 * LL and UR have at least sufficient elements. */

5 public static void fillGrid(int[] LL, int[] UR, int[][] S) {

6 int N = S.length;

7 int kL, kR;

8 kL = kR = 0;

9

10 for (int i = 0; i < N; i += 1) {

11

12 ___

13

14 ___

15

16 ___

17

18 ___

19

20 ___

21

22 ___

23

24 ___

25

26 ___

27

28 ___

29 }

30 }

Arrays, Linked Lists 3

2 Even Odd
Implement the method evenOdd by destructively changing the ordering of a given

IntList so that even indexed links precede odd indexed links.

For instance, if lst is defined as IntList.list(0, 3, 1, 4, 2, 5), evenOdd(lst)

would modify lst to be IntList.list(0, 1, 2, 3, 4, 5).

You may not need all the lines.

Hint: Make sure your solution works for lists of odd and even lengths.

1 public class IntList {

2 public int first;

3 public IntList rest;

4 public IntList (int f, IntList r) {

5 this.first = f;

6 this.rest = r;

7 }

8

9 public static void evenOdd(IntList lst) {

10

11 if (__) {

12 return;

13 }

14

15 ___

16

17 ___

18

19 while (__) {

20

21 ___

22

23 ___

24

25 ___

26

27 ___

28 }

29

30 ___

31 }

32 }

4 Arrays, Linked Lists

3 Partition
Implement partition, which takes in an IntList lst and an integer k, and de-

structively partitions lst into k IntLists such that each list has the following

properties:

1. It is the same length as the other lists. If this is not possible, i.e. lst cannot

be equally partitioned, then the later lists should be one element smaller.

For example, partitioning an IntList of length 25 with k = 3 would result in

partitioned lists of lengths 9, 8, and 8.

2. Its ordering is consistent with the ordering of lst, i.e. items in earlier in lst

must precede items that are later.

These lists should be put in an array of length k, and this array should be returned.

For instance, if lst contains the elements 5, 4, 3, 2, 1, and k = 2, then a possible

partition (note that there are many possible partitions), is putting elements 5, 3, 2

at index 0, and elements 4, 1 at index 1.

You may assume you have the access to the method reverse, which destructively re-

verses the ordering of a given IntList and returns a pointer to the reversed IntList.

You may not create any IntList instances. You may not need all the lines.

Hint: You may find the % operator helpful.

1 public static IntList[] partition(IntList lst, int k) {

2 IntList[] array = new IntList[k];

3 int index = 0;

4 IntList L = _____________________________________

5 while (L != null) {

6

7 ___

8

9 ___

10

11 ___

12

13 ___

14

15 ___

16

17 ___

18

19 ___

20 }

21 return array;

22 }

	Fill Grid
	Even Odd
	Partition

