
CS 61B More Sorting
Spring 2021 Discussion 13: April 19, 2021

1 Quicksort
(a) Sort the following unordered list using stable Quicksort. Assume that we always choose first

element as the pivot and that we use the 3-way merge partitioning process described in lecture.

Show the steps taken at each partitioning step.

18, 7, 22, 34, 99, 18, 11, 4

-18-, 7, 22, 34, 99, 18, 11, 4

-7-, 11, 4 | 18, 18 | 22, 34, 99

4, 7, 11, 18, 18 | -22-, 34, 99

4, 7, 11, 18, 18, 22 | -34-, 99

4, 7, 11, 18, 18, 22, 34, 99

(b) What is the best and worst case running time of Quicksort with Hoare Partitioning on N ele-

ments? Given the two lists [4, 4, 4, 4, 4] and [1, 2, 3, 4, 5], assuming we pick the first element as

the pivot every time, which list would happen to result in better runtime?

Best: Θ(N logN) Running Quicksort on a list that has a pivot splits the partition exactly in half

will result in Θ(logN) levels, with the same amount work as above (i.e. Θ(N) at each level). For

example, [3, 1, 2, 5, 4]. An alternative case is when we have all of the same element in the

array (i.e. [4, 4, 4, 4, 4]), since the two pointers in Hoare’s partitioning always end up in the

middle.

Worst: Θ(N2). In general, the worst case is such that the partioning scheme repeatedly partions

an array into one element and the rest.

Running Quicksort on a sorted list will take Θ(N2) if the pivot chosen is always the first or last

in the subarray: [1, 3, 3, 4, 5]. At each level of recursion, you will need to do Θ(N) work,

and there will be Θ(N) levels of recursion. This sums up to 1 + 2 + · · ·+ N .

(c) What are two techniques that can be used to reduce the probability of Quicksort taking the worst

case running time?

1. Randomly choose pivots.

2. Shuffle the list before running Quicksort.

2 More Sorting

2 Comparison Sorts Summary
(a) When choosing an appropriate algorithm, there are often several trade-offs that we need to con-

sider. Complete the chart for the following sorting algorithms: give the expected time complexity

in the worst case, in the best case, and whether or not each sort is stable.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability In Place

Selection Sort Θ(n2) Θ(n2) No Yes

Insertion Sort Θ(n) Θ(n2) Yes Yes

Heapsort Θ(n) Θ(n log n) No Yes

Mergesort Θ(n log n) Θ(n log n) Yes No (usually)

Quicksort

(w/ Hoare

Partitioning)

Θ(n log n) Θ(n2) No Mostly

For all of these algorithms, note that there are many variants, and it’s possible to find imple-

mentations with different stats than given above. For example, mergesort CAN be implemented

in place, but its terrible and complicated, so in practice, we use a version that is not in place.

Also note that most implementations of Quicksort use O(log(n)) additional space, which many

people consider in-place. However, some people define ”in place” to mean a constant amount of

extra space.

(b) For each selection sort, give an example of a list where the order of equivalent items is not

preserved.

In the following example, we only care about the number. The letter is to distinguish equal

objects. We’ve given examples for heapsort and quicksort (our other unstable sorts) too, if

you’re interested!

Selection Sort: 3a, 3b, 3c, 1

[3a 3b 3c *1*]

1 [3b 3c 3a]

1 3b [3c 3a]

1 3b 3c [3a]

Heapsort: 1a, 1b, 1c

Quicksort: 3, 5a, 2, 5b, 1

[-3- *5a* 2 5b ˜1˜]

[-3- 1 2 5b 5a]

[-3- 1 *2* ˜5b˜ 5a]

[-3- 1 2 *˜5b˜* 5a]

[-3- 1 ˜2˜ *5b* 5a]

"L" and "R" pointers cross, swap pivot.

[1 2] 3 [5b 5a]

More Sorting 3

[-1- 2] 3 [-5b- 5a]

[-1- *˜2˜*] 3 [-5b- *˜5a˜*]

[-1- ˜˜ *2*] 3 [-5b- ˜˜ *5a*]

[-1-] [-2-] 3 [-5b-] [5a]

1 2 3 5b 5a

Note that if using Quicksort that randomizes the array, any array could yield instability.

(c) Notice that the worst-case runtime in the comparison sorts on an N element array listed above

are lower bounded by Θ(N logN). Can there be a sort that runs faster than Θ(N logN) in the

worst-case?

Yes, if we can avoid sorts that require comparisons, otherwise no. Given N elements, there are

N ! possible permutations. Using a comparison sort, we will need at least log2(N !) ∈ Ω(N logN)

comparisons. This is because one comparison could eliminate at most half of the possible permu-

tations–when comparing two elements A and B, if you decide A should come first, then you’ve

eliminated all the other permutations where B came first. However, with counting sorts, we can

avoid the need for comparisons, and get a runtime that is linear with respect to the number of

elements in the list, though its runtime is greatly dependent on other factors like radix and word

size.

4 More Sorting

3 Radix Sorts
(a) Sort the following list using LSD Radix Sort with counting sort. Show the steps taken after each

round of counting sort. The first row is the original list and the last two rounds are already filled

for you.

30395 30326 43092 30315

1 43092 30395 30315 30326

2 30315 30326 43092 30395

3 43092 30315 30326 30395

4 30315 30326 30395 43092

5 30315 30326 30395 43092

(b) Sort the following list using MSD Radix Sort with counting sort. Show the steps taken after each

round of counting sort. The first row is the original list and the first three rounds are already

filled for you.

The underlined sections denote the digits that have already been sorted.

30395 30326 40392 30315

1 30395 30326 30315 | 40392

2 30395 30326 30315 | 40392

3 30395 30326 30315 | 40392

4 | 30315 | 30326 | 30395 | 40392

5 | 30315 | 30326 | 30395 | 40392

(c) Give the best case runtime, worst case runtime, and whether or not the sort is stable for both

LSD and MSD radix sort. Assume we have N elements, a radix R, and a maximum number of

digits in an element W.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

LSD Radix Sort Θ(W (N + R)) Θ(W (N + R)) Yes

MSD Radix Sort Θ(N + R) Θ(W (N + R)) Yes

(d) We just saw above that radix sort has great runtime with respect to the number of elements in

the list. Given this fact, should we say that radix sort is the best sort to use?

No. Though radix sort runs linear with respect to the number of elements in the list, the runtime

also depends on the size of the radix R and the length of the longest ”word” W (or the number

of digits in a number). Additionally, it is not always possible to use radix sort, because not all

objects can be split up into digits. However, comparison sorts can be used on any object that

defines a compareTo method, and would work well with compareTo methods that are fast.

More Sorting 5

4 Bounding Practice Extra

Given an array of n elements, the heapification operation permutes the elements of the array into a

heap. There are many solutions to the heapification problem. One approach is bottom-up heapifica-

tion, which treats the existing array as a heap and rearranges all nodes from the bottom up to satisfy

the heap invariant. Another is top-down heapification, which starts with an empty heap and inserts

all elements into it.

(a) Why can we say that any solution for heapification requires Ω(n) time?

In order to check that an array satisfies the heap invariant, we have to at least look at every

element, which takes linear time.

(b) The worst-case runtime for top-down heapification is in Θ(n log n). Why does this mean that the

optimal solution for heapification takes O(n log n) time?

Since at least one solution for heapification takes O(n log n) time, the optimal solution for heapi-

fication takes O(n log n) time. Big O describes an upper bound on an operation, or in other

words, the fastest rate at which it could possibly grow with respect to the input.

(c) In contrast, bottom-up heapification is an O(n) algorithm. Is bottom-up heapfication asymptotically-

optimal?

Since the running time of bottom-up heapify is Θ(n) and any solution for heapification requires

Ω(n), bottom-up heapification is asymptotically optimal.

(d) Show that the worst-case runtime for top-down heapification is in Θ(n log n).

For top-down heapification, where n elements are inserted into a Max Heap and subsequently

popped off, the worst case is when a node needs to swim all the way up from the bottom at every

element inserted.

Intuitively, it takes, at worst, log n work to insert a single element into a max heap, and we have

n elements to insert, totalling to n log n work to create the heap. This logic alone is sufficient

within the scope of 61B.

For a more mathematical explanation: inserting the first element into the 0th level will require

some work. Inserting the second (and third) element will require swimming up a level into the

1st level, with 2 nodes at that level, results in a total of (21 ∗ (1)) work on that level. Likewise,

inserting the 4th (and 5th, 6th, and 7th) node requires swimming up two levels for a total work

of (22 ∗ (2)) work at the third level. At the ith level, there is a total work of (2i ∗ i) In a heap with

n elements, there are log n levels. The total work done is the summation of the work to insert all

the nodes into a max heap where the insertion requires a node to swim from the bottom-most

row to the top, such as inserting an array elements that are already in order (1,2,3,4,5...). Then,

we get

6 More Sorting

log2(n)∑
i=0

i2i ≤
log2(n)∑
i=0

log2(n)2i

= log2(n)

log2(n)∑
i=0

2i

= log2(n) ∗ n //note

log2(n)∑
i=0

2i = 1 + 2 + 4 + ... + 2log2(n) ∈ Θ(n)

= Θ(n log n)

(e) Show that the running time of bottom-up heapify is Θ(n). This runtime derivation is definitely

out of scope for this class–don’t worry if you don’t get the math!

Some useful facts:
∞∑
i=0

xi =
1

1− x

Taking the derivative:

d

dx
(

∞∑
i=0

xi) =
1

(1− x)2

In bottom up heapification, we call swimDown() on every node, from bottom to top (or right to

left in the underlying array). We want to sum the total work done in swimDown() at every node

in the heap, so we can do this by summing the work done at each layer/level of the heap.

The number of levels in a heap is log(n).

For each call to swimDown(), the number of work we’ll do is proportional to how far that node

would have to swim down. Nodes at the bottom of the heap don’t have to move down at all, for

example. So nodes at layer i would have to do i work, and the number of layers ranges from 0

to log(n), where 0 is the leaf level and the root is at level log(n).

How many nodes are at leach layer? Doing some quick math, we see that it is 2log(n)−i−1, where

i is the layer number. Again layer i=0 is the leaves!

Putting this all together, we want to sum the amount of work done per node on a given layer (pro-

portional to i) multiplied by the amount of nodes in that given layer (proportional to 2log(n)−i−1).

We want to sum this all up for all layers, which means we should do a summation from 0 to log(n),

because that’s the height of a heap!

Then the running time of heapify is:

logn∑
i=0

i2log(n)−i−1 =

logn∑
i=0

i
n

2i+1

=
n

4

logn∑
i=0

i(
1

2
)i−1

More Sorting 7

For ease of calculation, let’s substitute x = 1
2 and continue where we left off.

n

4

logn∑
i=0

ixi−1 ≤ n

4

∞∑
i=0

i (x)
i−1

=
n

4

d

dx

∞∑
i=0

xi

=
n

4

(
1

(1− x)2

)
=

n

4

(
1

(1− 1/2)2

)
= Θ(n)

Essentially, the idea is just that each level roughly doubles the work, so the total runtime depen-

dency on n is linear.

	Quicksort
	Comparison Sorts Summary
	Radix Sorts
	Bounding Practice Extra

