
CS 61B LLRBs, Hashing
Spring 2020 Discussion 8: March 8, 2021

1 2-3 Trees and LLRB’s
(a) Draw what the following 2-3 tree would look like after inserting 18, 38, 12, 13,

and 20.

8

4 6

3 5 7

14

10 15

Adding 18:

8

4 6

3 5 7

14

10 15 18

Adding 38:

8

4 6

3 5 7

14 18

10 15 38

Adding 12:

8

4 6

3 5 7

14 18

10 12 15 38

Adding 13:

8 14

4 6

3 5 7

12

10 13

18

15 38

Adding 20:

8 14

4 6

3 5 7

12

10 13

18

15 20 38

(b) Now, convert the resulting 2-3 tree to a left-leaning red-black tree.



2 LLRBs, Hashing

14

8

6

4

3 5

7

12

10 13

18

15 38

20

(c) If a 2-3 tree has depth H (that is, the leaves are at distance H from the root),

what is the maximum number of comparisons done in the corresponding red-

black tree to find whether a certain key is present in the tree?

2H + 2 comparisons.

The maximum number of comparisons occur from a root to leaf path with the

most nodes. Because the height of the tree is H, we know that there is a path

down the leaf-leaning red-black tree that consists of at most H black links, for

black links in the left-leaning red-black tree are the links that add to the height

of the corresponding 2-3 tree. This means that there are H + 1 nodes on the

path from the root to the leaf, since there is one less link than nodes,

In the worst case, in the 2-3 tree representation, this path can consist entirely of

nodes with two items, meaning in the left-leaning red-black tree representation,

each blank link is followed by a red link. This doubles the amount of nodes on

this path from the root to the leaf.

This example will represent our longest path, which is 2H + 2 nodes long,

meaning we make at most 2H + 2 comparisons in the left-leaning red-black

tree.



LLRBs, Hashing 3

2 Hashing
(a) Here are three potential implementations of the Integer’s hashCode() function.

Categorize each as either a valid or an invalid hash function. If it is invalid,

explain why. If it is valid, point out a flaw or disadvantage. For the 2nd

implementation, note that intValue() will return that Integer’s number value

as an int

public int hashCode() {

return -1;

}

Valid. As required, this hash function returns the same hashCode for Integers

that are equals() to each other. However, this is a terrible hash code because

collisions are extremely frequent (collisions occur 100% of the time).

public int hashCode() {

return intValue() * intValue();

}

Valid. Similar to (a), this hash function returns the same hashCode for integers

that are equals(). However, integers that share the same absolute values will

collide (for example, x = 5 and x = −5 will have the same hash code). A

better hash function would be to just return the intValue() itself.

public int hashCode() {

return super.hashCode();

}

Invalid. When we call super.hashCode() here, we will ulimately end up re-

turning Object.hashCode(). This hash function returns some number corre-

sponding to the Integer object’s location in memory.

However, note what happens below:

Integer x = new Integer(5);

Integer y = new Integer(5);

Here, x and y are both instantiated as separate objects, meaning they’ll be at

two distinct memory addresses! Then x and y would receive different hashcodes

according to our current hashCode() implementation. However, this is not

desired/valid behavior, because x and y are equal according to the .equals()

method, so their hashcodes should be the same.

(b) For each of the following questions, answer Always, Sometimes, or Never.

1. If you were able to modify a key that has been inserted into a HashMap

would you be able to retrieve that entry again later? For example, let us

suppose you were mapping ID numbers to student names, and you did a

put(303, "Anjali") operation. Now, let us suppose we somehow went to

that item in our HashMap and manually changed the key to be 304. If we

later do get(304), will we be able to find and return "Anjali"? Explain.



4 LLRBs, Hashing

Sometimes. If the hashCode for the key happens to change as a result

of the modification, then we won’t be able to retrieve the entry in our

hashtable (unless we were to recompute which bucket the new key would

belong to). Changing the key can potentially (and likely) change which

bucket a key would now be indexed to.

In our example, let us suppose the hashCode() for a key was just it’s

integer value, and the bucket was calculated as that number modulo the

number of buckets. Let’s say we had 10 buckets. In this scenario, 303

would be mapped to bucket 3, and 304 would be mapped to bucket 4.

So when we put(303, "Anjali"), this item goes to bucket 3. Then we

change the key to be 304, but don’t change anything else, so this item

remains in bucket 3. Now, let us suppose we later do get(304). We will

computer which bucket the key 304 would correspond to, which would be

bucket 4. We look in bucket 4 and don’t see the time there, so we cannot

successfully return the item.

2. When you modify a value that has been inserted into a HashMap will

you be able to retrieve that entry again? For example, in the above

scenario, suppose we first inserted put(303, "Anjali") and then changed

that item’s value from "Anjali" to "Ajay". If we later do get(303), will

we be able to find and return "Ajay"? Explain.

Always. The bucket index for an entry in a HashMap is decided by the key,

not the value. Mutating the value does not affect the lookup procedure.

In our example this would work, because when we do get(303) we will

still go to the correct bucket.



LLRBs, Hashing 5

3 A Side of Hash Browns
We want to map food items to their yumminess. We want to be able to find this

information in constant time, so we’ve decided to use java’s built-in HashMap class!

Here, the key is an String representing the food item and the value is an int

yumminess rating.

For simplicity, let’s say that here a String’s hashcode is the first letter’s position

in the alphabet (A = 0, B = 1... Z = 25). For example, the String ”hash brown”

starts with ”h”, and ”h” is 7th letter in the alphabet (0 indexed), so the hashcode

would be 7. Note that in reality, a String has a much more complicated hashCode()

implementation.

Our hashMap will compute the index as the key’s hashcode value modulo the num-

ber of buckets in our HashMap. Assume the initial size is 4 buckets, and we double

the size our HashMap as soon as the load factor reaches 3/4.

(a) Draw what our HashMap would look like after the following operations.

1 HashMap<Integer, String> hm = new HashMap<>();

2 hm.put("Hashbrowns", 7);

3 hm.put("Dim sum", 10);

4 hm.put("Escargot", 5);

5 hm.put("Brown bananas", 1);

6 hm.put("Burritos", 10);

7 hm.put("Buffalo wings", 8);

8 hm.put("Banh mi", 9);

Note that we resize from 4 to 8 when adding escargot (because we have 3 items

and 4 buckets) and then from 8 to 16 when adding buffalo wings (because we

have 6 items and 8 buckets).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

“Escargot”: 5

“Brown 
Banana”: 1

“Banh Mi”: 
9

“Buffalo 
Wings”: 8

“Burrito”: 
10

“Hash browns”: 7

“Dim Sum”: 10

(b) Do you see a potential problem here with the behavior of our hashMap? How

could we solve this?



6 LLRBs, Hashing

Here, adding a bunch of food items that start with the letter ”B” result in one

bucket with a lot of items. No matter how many times we resize, our current

hashCode() will result in this problem! Imagine if we added in 100 more items

that started with the letter b. Though we would resize and keep our load factor

low, it wouldn’t change the fact that our operations will now be slow (hint:

linear time) because now we essentially have to iterate over a linked list with

pretty much all the items in the hashMap to do things like get("Burrito"),

for example.

A solution to this would be to have a better hashCode() implementation. A

better implementation would distribute the Strings more randomly and evenly.

While knowing how to write such a hashCode() is difficult and out of scope

for this class, you can look at the real hashCode() implementation for Java

Strings if you’re curious!


	2-3 Trees and LLRB's
	Hashing
	A Side of Hash Browns

