
CS 61B Inheritance
Spring 2021 Discussion 4: February 8, 2021

1 Raining Cats and Dogs
(a) Below, four classes are defined. What would Java do after executing the main method in the

testAnimals class? Next to each blank, if something is printed write it down. If there is an error,

write whether it is a runtime error or compile time error, and then proceed through the rest of the

code as if the erroneous line were not there.

1 public class Animal {

2 public String name, noise;

3 public int age;

4

5 public Animal(String name, int age) {

6 this.name = name;

7 this.age = age;

8 this.noise = "Huh?";

9 }

10

11 public void greet() {System.out.println("Animal " + name + " says: " + this.noise);}

12

13 public void play() {System.out.println("Woo it is so much fun being an animal!")}

14 }

15

16 public class Cat extends Animal {

17 public Cat(String name, int age) {

18 super(name, age);

19 this.noise = "Meow!";

20 }

21

22 @Override

23 public void greet() {System.out.println("Cat " + name + " says: " + this.noise);}

24

25 public void play(String expr) {System.out.println("Woo it is so much fun being a cat!" + expr)}

26 }

27

28 public class Dog extends Animal {

29 public Dog(String name, int age) {

30 super(name, age);

31 noise = "Woof!";

32 }

33

34 @Override

35 public void greet() {System.out.println("Dog " + name + " says: " + this.noise);}



2 Inheritance

36

37 public void play(int happiness) {

38 if (happiness > 10) {

39 System.out.println("Woo it is so much fun being a dog!")

40 }

41 }

42 }

43

44 public class TestAnimals {

45 public static void main(String[] args) {

46 Animal a = new Animal("Pluto", 10);

47 Cat c = new Cat("Garfield", 6);

48 Dog d = new Dog("Fido", 4);

49 a.greet(); // "Animal Pluto says huh?"

50 c.greet(); // "Cat Garfield says Meow!"

51 d.greet(); // "Dog Fido says Woof!"

52 c.play(); // "Woo it is so much fun being an animal!"

53 c.play(":)") // "Woo it is so much fun being a cat! :)"

54 a = c;

55 ((Cat) a).greet(); // "Cat Garfield says Meow!"

56 ((Cat) a).play(":D"); // "Woo it is so much fun being a cat! :D"

57 a.play(14); // Compile time error.

58 ((Dog) a).play(12); // Runtime error.

59 a.greet(); // "Cat Garfield says Meow!"

60 c = a; // Compile time error.

61

62 }

63 }

(b) Spoiler alert! There is an error on the last line, line 60. How could we fix this error?

The compilation error on line 60 is because we are trying set c, which is of static type Cat to be

equal to a, when the static type of a is Animal. Even though at runtime, a really does have dynamic

type Cat, the compiler only sees static types so it doesn’t believe that this assignment is valid. The

compiler only sees that we are trying to set a Cat variable to point to an Animal, and an Animal

isn’t a Cat! One way to fix this error would be to cast a to be a Cat, such that the line reads

c = (Cat) a;. This would be a valid cast, as the compiler agrees that a variable of static type

Animal could potentially hold a Cat, and so our request is feasible. Because the cast works, then the

assignment is also now valid because a variable of static type Cat can be told to point to the same

thing as another variable of (temporary) static type Cat. At runtime, this line will be fine because

we were telling the truth: a really is a Cat dynamically!



Inheritance 3

2 An Exercise in Inheritance Misery
Cross out any lines that result in compiler errors, as well as subsequent lines that would fail because of

the compiler error. Put an X through runtime errors (if any). Don’t just limit your search to main, there

could be errors in classes A,B,C. What does D.main output after removing these lines?

1 public class A {

2 public int x = 5;

3 public void m1() { System.out.println("Am1-> " + x); }

4 public void m2() { System.out.println("Am2-> " + this.x); }

5 public void update() { x = 99; }

6 }

7 public class B extends A {

8 public void m2() { System.out.println("Bm2-> " + x); }

9 public void m2(int y) { System.out.println("Bm2y-> " + y); }

10 public void m3() { System.out.println("Bm3-> " + "called"); }

11 }

12 public class C extends B {

13 public int y = x + 1;

14 public void m2() { System.out.println("Cm2-> " + super.x); }

15 \\ public void m4() { System.out.println("Cm4-> " + super.super.x); } can't do super.super

16 public void m5() { System.out.println("Cm5-> " + y); }

17 }

18 public class D {

19 public static void main (String[] args) {

20 \\ B a0 = new A(); Dynamic type must be B or subclass of B

21 \\ a0.m1(); cascading: prev line failed, so a0 can't be initialized

22 \\ a0.m2(16); cascading: prev line failed, so a0 can't be initialized

23 A b0 = new B();

24 System.out.println(b0.x); [prints "5"]

25 b0.m1(); [prints "Am1-> 5"]

26 b0.m2(); [prints "Bm2-> 5"]

27 \\ b0.m2(61); m2 (int y) not defined in static type of b0

28 B b1 = new B();

29 b1.m2(61); [prints "Bm2y-> 61"]

30 b1.m3(); [prints "Bm3-> called"]

31 A c0 = new C();

32 c0.m2(); [prints "cm2-> 5"]

33 \\ C c1 = (A) new C(); Can't assign c1 to an A

34 A a1 = (A) c0;

35 C c2 = (C) a1;

36 c2.m3(); [print Bm3-> called]

37 \\ c2.m4(); C.m4() is invalid

38 c2.m5(); [print Cm5-> 6]

39 ((C) c0).m3(); [print Bm3-> called]

40 \\ (C) c0.m2(); NOT RUNTIME ERROR This would cast the result of what the method returns and

it returns void therefore compile-time error



4 Inheritance

41 b0.update();

42 b0.m1(); [print Am1-> 99]

43 }

44 }


	Raining Cats and Dogs
	An Exercise in Inheritance Misery

